Preparation of Graphene Quantum Dot using Oriented Nanoparticle Catalysts
نویسندگان
چکیده
منابع مشابه
pH Effect on the Size of Graphene Quantum dot Synthesized by Using Pulse Laser Irradiation
In this study graphene oxide (GO) was synthesized by using Hummer’s method. Low dimension graphene quantum dot nanoparticles (GQDs) were synthesized using pulse laser irradiation. Fourier Transform-Infrared Spectroscopy (FTIR), Ultraviolet-Visible (UV-Vis) spectroscopy and photoluminescence (PL) analysis were applied to study the GQDs characteristic. Scanning electron microscopy illustrated the...
متن کاملMechanisms of quantum dot nanoparticle cellular uptake.
Due to the superior photoemission and photostability characteristics, quantum dots (QD) are novel tools in biological and medical applications. However, the toxicity and mechanism of QD uptake are poorly understood. QD nanoparticles with an emission wavelength of 655 nm are ellipsoid in shape and consist of a cadmium/selenide core with a zinc sulfide shell. We have shown that QD with a carboxyl...
متن کاملPreparation of Quantum Dot/Drug Nanoparticle Formulations for Traceable Targeted Delivery and Therapy
Quantum dots (QDs) are luminescent nanocrystals with rich surface chemistry and unique optical properties that make them useful as probes or carriers for traceable targeted delivery and therapy applications. QDs can be functionalized to target specific cells or tissues by conjugating them with targeting ligands. Recent advancement in making biocompatible QD formulations has made these nanocryst...
متن کاملZ-shaped graphene nanoribbon quantum dot device
Stimulated by recent advances in isolating graphene, the authors discovered that a quantum dot can be trapped in a Z-shaped graphene nanoribbon junction. The topological structure of the junction can completely confine electronic states. By varying the junction length, the authors can alter the spatial confinement and the number of discrete levels within the junction. In addition, a quantum dot...
متن کاملQuantum dot behavior in bilayer graphene nanoribbons.
Bilayer graphene has recently earned great attention for its unique electronic properties and commendable use in electronic applications. Here, we report the observation of quantum dot (QD) behaviors in bilayer graphene nanoribbons (BL-GNRs). The periodic Coulomb oscillations indicate the formation of a single quantum dot within the BL-GNR because of the broad distribution function of the carri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hosokawa Powder Technology Foundation ANNUAL REPORT
سال: 2017
ISSN: 2189-4663
DOI: 10.14356/hptf.15101